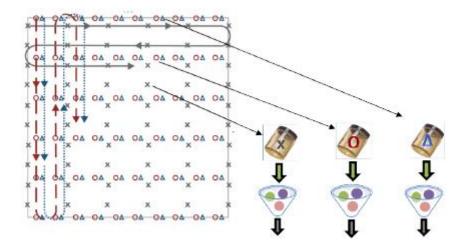

An Overview of Incremental Sampling Methodology and Its Current and Future Applications

Jacob Gruzalski

Overview of Incremental Sampling

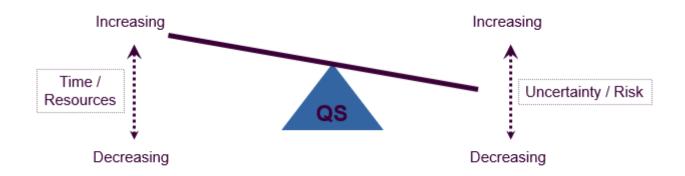
Methodology

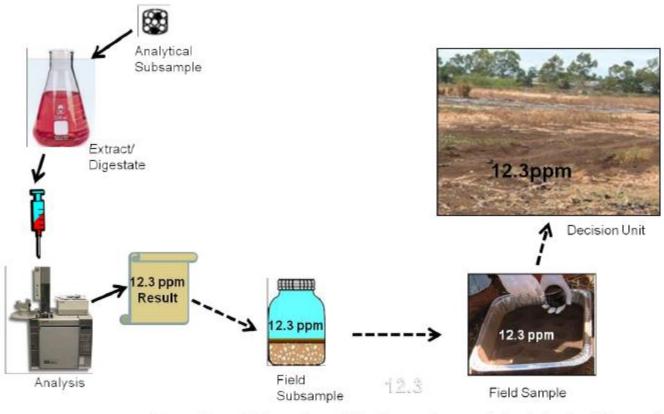
Objective – Provide an overview of incremental


- Objective Provide an overview of incremental sampling methodology (ISM)
 - Present ISM basics and its origins
 - Discuss the advantages of ISM
 - Discuss the fundamentals of sampling
 - Present and discuss the "7 basic sampling errors"
 - Discuss the implementation of an ISM program
 - Highlight the importance of planning...again and again and again

Technical and Regulatory Guidance

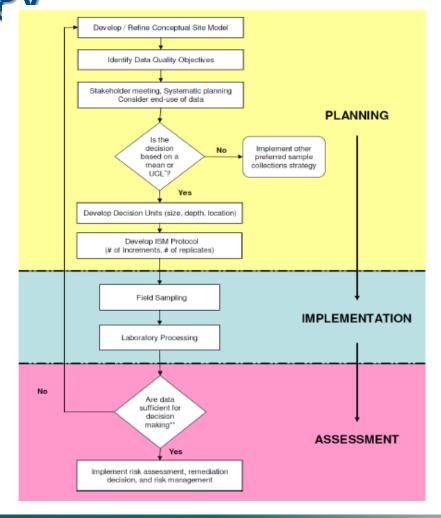
Incremental Sampling Methodology



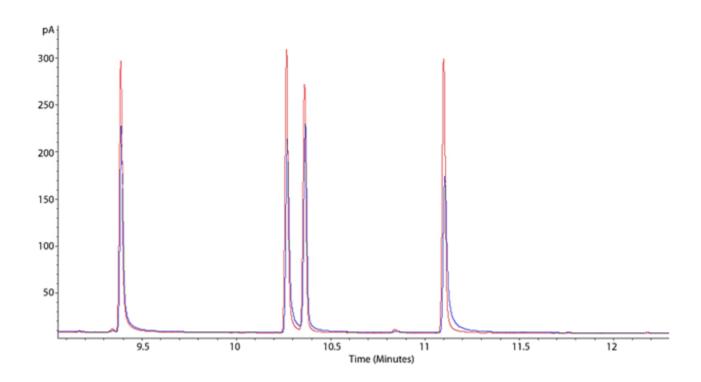


Overview of Incremental Sampling MethodologyAll collected data have errors.

- - Nobody can afford absolute certainty.
 - The Quality System seeks balance based on risk



----> = extrapolation of analytical sample result back to decision unit



Overview of Incremental Sampling **Methodology**Four Basic Principles in sampling and analysis:

- 1. Samples must be representative of the population unit being tested.
- 2. Procedures for sampling and analysis influence each other so plans for sampling and analysis are codependent.
- 3. QC samples must be representative of the samples being analyzed.
- 4. QC samples are used to provide an assessment of the kinds and amounts of bias and imprecision in data from analysis of the samples.

Overview of Incremental Sampling Methodology Table 2-2. Summary of sampling errors described by Gy and control measures

(These apply to both field sampling and subsequent subsampling)

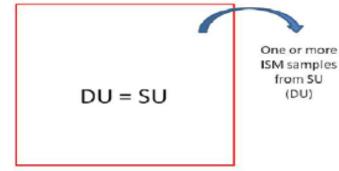
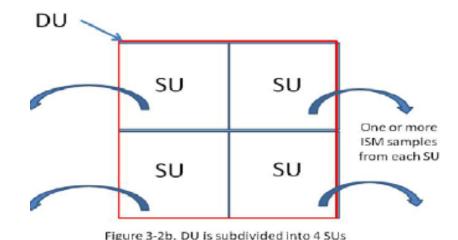
Factor leading	Sampling error	Error results from	How to control
to error			
Compositional	Fundamental error	Size and compositional	Increase the sample
heterogeneity	(FE)	distribution of the particles	mass and/or reduce the
(CH)			size of the particles
Distributional	Grouping and	Heterogeneous distribution	Increase the mass of the
heterogeneity	segregation error	of particles within the	sample or increase the
(DH)	(GSE)	population	number of increments
Large-scale	Long-range	Changes in concentration	Reduce the spatial
heterogeneity	heterogeneity	across space or over time	interval between
	fluctuation error (CE ₂)		samples
Periodic	Periodic heterogeneity	Periodic changes in	Change the spatial
heterogeneity	fluctuation error (CE ₃)	concentration over time	and/or temporal interval
			between samples
Identifying the	Increment delimitation	Incorrect shape (in all three	Use correct sampling
correct	error (DE)	dimensions) of the sample	plan design and correct
increment		or increment selected for	sampling equipment that
geometry		extraction from the	can sample the entire
		population	thickness of the
			population
Shape of the	Increment extraction	Incorrect extraction of the	Use correct sampling
sample	error (EE)	sample or increment	equipment that does not
extraction		because the sampling	push larger particles
device and		device is too small	aside, and use correct
nature of the soil			sampling protocols
Loss or gain of	Preparation error (PE)	Contamination loss or gain	Use appropriate sample
contaminants		due to alteration,	handling, preservation,
during sample		evaporation, degradation,	transport, and
handling		cross-contamination,	preparation measures
		mistake, or fraud	

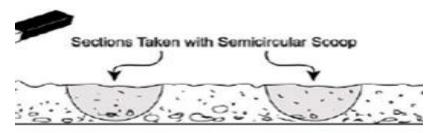
- True mean concentration = estimated mean concentration +/- total errors
- ISM is not always the answer
- Most action levels are derived from risk-based models. In general comparing mean concentrations for an area are appropriate to compare to these action levels
- US EPA DQO or Army Corp Technical Project Planning

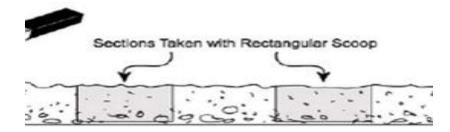
Overview of Incremental Sampling

Methodology
Sampling Unit - the volume of material represented by a single ISM sample. Define scale of ISM sample

- DU define the scale of the decision based on sampling.
- If a single sample for analysis is taken from Area A, then there is 1SU for Area A (Area A = the SU)
- If 30 increments from Area A are combined into a single composite samples for analysis. Area A has 1 SU (1 data result generated from


Figure 3-2a. DU = SU (SU concept is not needed).



igure 3-2. Decision units and sampling units.

entire Area A)

re 2-12. Illustration of the effects o ng device design on particle sizes in nple. Source: Gerlach and Nocerino 2003.

Just as with discrete sampling, a variety of sampling methods may be implemented with ISM sampling. One of the more common approaches in ISM is systematic random sampling (a.k.a., systematic grid sampling [Gilbert 1987]), where the DU is divided in a grid pattern, a random sampling location is identified within the first grid cell, and then samples

Simple random sampling, systematic random sampling, and systematic grid sampling yield unbiased estimates of the mean. The systematic sampling patterns ensure relatively even spatial distribution of samples across the site and are generally easier to implement in the field.

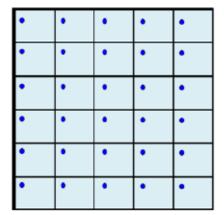


Figure 4-7. Systematic random sampling/ systematic grid sampling with a random start (Serpentine).

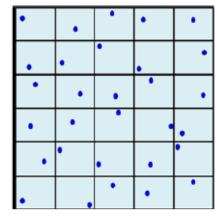


Figure 4-8. Random sampling within grids.

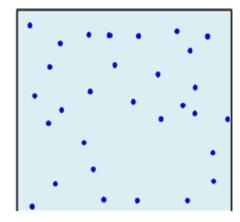


Figure 4-9. Simple random sampling within the entire DU.

Overview of Incremental Sampling Methodology Conclusion

- - ISM is a proven sampling approach that has the potential to save time and resources
 - ISM requires planning with all stakeholders
 - ISM will not be suitable in all situations, but the fundamentals of representative samples and data quality are
 - Sampling error should be considered during planning and when evaluating analytical data

Thank You

QUESTIONS?

Jacob Gruzalski, Credentials Associate Principal Geoscientist 865.376.7590 jgruzalski@envstd.com